| |
 |
|
|
| Avtorstvo: |
Boštjan BRANK // 1.01 Izvirni znanstveni članek
|
| Leto: |
2000 |
| Citat: |
BRANK, Boštjan, CARRERA, Erasmo. Multilayered shell
finite element with interlaminar continuous shear stresses : a refinement of the
Reissner-Mindlin formulation. Int. j. numer. methods eng., 2000, vol. 48,
n. 6, str. 843-874, graf. prikazi. |
| Povzetek: |
A finite element formulation for
refined linear analysis of multilayered shell structures of moderate thickness
is presented. An underlying shell model is a direct extension of the first-order
shear-deformation theory of Reissner-Mindlin type. A refined theory with seven
unknown kinematic fields is developed; (i) by introducing an assumption of a
zig-zag (i..e. layer-wise linear) variation of displacement field through the
thickness, and (ii) by assuming an independent transverse shear stress fields in
each layer in the framework of Reissner's mixed varianational principle. The
introduced transverse shear stress unknowns are eliminated on the cross-section
level. At this process, the interlaminar equilibrium conditions (i.e. the
interlaminar shear stress continuity continuity conditions) are imposed. As a
result, the weak form of constitutive equations (the so-called weak form of
Hooke's law) is obtained for the transverse strains-transverse stress resultants
relation. A finite element approximation is based on the four-nodedisoparametric
element. To eliminate the shear locking effect, the assumed strain variational
concept is used. Performance of the derived finite element is illustrated with
some numerical examples. The results are compared with the exact
three-dimensional solutions, as well as with the analytical and numerical
solutions obtained by the classical, the first-order and some representative
refined models [COBISS.SI-ID 947041]
|
| Tipologija: |
1.01 Izvirni znanstveni članek |
| COBISS ID |
947041 Polni zapis iz sistema COBISS |
|
Vpisal 2009/06/10 11:56
|
|